ZOO6927-9122(28407) - Special Topics

MILESTONE PAPERS IN DEVELOPMENT AND REGENERATION

This course will meet weekly to present, read and discuss the most important papers in developmental biology and regeneration over the last century. The papers we will consider have established new disciplines, new model organisms and new techniques to generate major advances the fields of development and regeneration. We will begin with R.G. Harrison's 1921 paper on the limb field and end up with genome sequencing and single cell RNAseq to ask how the work came about, its significance both scientifically and sociologically and its value to scientific discovery. We will also see how the scientific method has dramatically changed over this time course.

Each member of the class will present one of these papers as a powerpoint presentation.

Date	Time	Paper to discuss	Comments
3 rd Sept	10.40-11.30	Introduction, what we are going to do, what did these papers discover, how do they relate to today's research and understanding, how has research changed?	
10 th Sept	10.40-11.30	Harrison "On relations of symmetry in transplanted limbs". J. Exp. Zool. 32, 1- 136, 1921	First analysis of tissue interactions in development limb bud. 136 figures, individual cases reported!
17 th Sept	10.40-11.30	Spemann & Mangold "Uber induction von embryonalanlagen durch implantation artfremder organisatoren". 1924	Discovery of 'the organiser'. Nobel prize work.
24 th Sept	10.40-11.30	Singer "Influence of the nerve in regeneration of the amphibian extremity". Quart Rev Biol. 27, 169-200, 1952	Elaboration of the neurotrophic control of limb regeneration.
1 st Oct	10.40-11.30	Wolpert "Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1-47 (1969).	Theoretical description of how patterning works in embryos which laid the groundwork for developmental biology.
8th Oct	10.40-11.30	Tickle, Summerbell & Wolpert "Positional signalling and specification of digits in chick limb bud morphogenesis". Nature 254, 199-202, 1975.	Discovery of an organizer in the limb bud and how it works
15 th Oct	10.40-11.30	Lewis "A gene complex controlling segmentation in Drosophila". Nature 276, 565-570, 1978.	The classical genetic analysis of Hox genes. Nobel prize work.

22 nd Oct	10.40-11.30	Nusslein-Volhard & Weischaus	Mutation screening reveals
		"Mutations affecting segment number	how spatial organization and
		and polarity in Drosophila" Nature 287,	segmentation works
		795-801, 1980	genetically
29 th Oct	10.40-11.30	Maden, M. Nature 295, 672-675, 1982	RA as a concentration
		Studer et al. Science 265, 1728-1732,	dependent morphogen and
		1994	how it acts via Hox genes.
5 th Nov	10.40-11.30	O. Chisaka & M.R. Capecchi "Regionally	Early mouse gene ko showing
		restricted developmental defects	hox gene function in the
		resulting from targeted disruption of the	mouse embryo. Nobel prize
		mouse homeobox gene hox-1.5". Nature	work.
		350, 473-479, 1991.	
12 th Nov	10.40-11.30	D.Y.R. Stainier et al. "Mutations affecting	Example of the power of
		the formation and function of the	zebrafish to discover gene
		cardiovascular system in the zebrafish	function and the cause of
		embryo". Development 123, 285-292,	human abnormalities
		1996.	
19 th Nov	10.40-11.30	Nowoshilow et al. "The axolotl genome	Not just a 32-Gb genome
		and the evolution of key tissue formation	sequence (10x bigger than
		regulators". Nature 554, 50-55, 2018.	human), but also why some
			animals can regenerate and
			others cannot
26 th Nov		THANKSGIVING	
3 rd Dec	10.40-11.30	Y. Wang et al. Single-cell analysis of	Single cell RNA seq analysis of
		murine fibroblasts identifies neonatal to	why we can't regenerate our
		adult switching that regulates	heart.
		cardiomyocyte maturation. Nature	
		Comm. 11:2585	
		https://doi.org/10.1038/s41467-020-	
1		16204-w (2020)	